
Good afternoon everyone! Thanks for sticking with us all the way to this, the last talk
in the last hour on the last day of GDC.

I’m Elan Ruskin and today I’m going to talk at you about dialog in games, and how to
build a system that lets your writers make it as they do best.

1

2

Today we’re going to talk about a system we have for tracking a whole bunch of state
about the world in a uniformly manageable way, and then using that state to select
just the right line from a big database of character speech. It’s the system we used in
The Orange Box, Left4Dead, Portal, Dota…. All our games. You can use the same
mechanism to drive things other than character dialog, although that didn’t occur to
us until after we had built it.

..
Who is this talk for?

Programmers and writers.
Programmers will see how to build a system for creating AIs that
dynamically generate dialog based on world state, and possible
extension into other fields via script.
Writers will see the possibilities of such a system, and suggestions for
how to create an interface that allows them to generate content easily.

What's this about?
Dynamic game dialog, the code behind the engine that drives ours, and
thoughts on how to design games around such dialog and dialog around
games.
And then how you can extend the system to drive other things

3

But more importantly today’s talk is about empowering writers. You can’t have dialog
without writers, and making writers’ lives easy is the best way to get good dialog. So
this is mostly about how to generally think about world state and character behavior
in a way that enables writers to create and iterate independently.

4

We’ve tried to make a system that is as simple as possible, general enough for many
features in all our games, efficient enough to be used at runtime, and user-friendly
for the writers who populate it. This is actually three things, not four, because I firmly
believe that simple and friendly are the same thing. A system that is simple to use
gets used. A system that is simple to write gets maintained.

5

Why stand here and talk for an hour about talking? Well, there have been a bunch of
games recently that I think did interesting and successful things with dialog that…
… was an artistic element of the game
… remembered and responded to the player’s actions
… created character and environment
… or was just plain fun.

I don’t know how they did their stuff, but I know how we did it, and I think our system
could enable people to make more games like these. I liked all these games, so I want
people to make more like them, so I can play them! My ulterior motive.

6

By “contextual” or “dynamic”’ dialog I just mean any system where characters speak,
and the speech seems to respond to players’ actions, the state of the world around
them, and previous events. In the beginning, when games were nothing *but* dialog,
this was pretty straightforward.

7

Things got complicated pretty fast after that. Early RPGs introduced the notion of
conversation trees, so players could have back-and-forth with characters, but those
got big. Also, you might want a character to remember the fact that you blew up their
home village three missions ago, and pick a different tree based on that, so that
entailed keeping a bunch of global state and control flow which gets unwieldy very
quickly.

8

Some games don’t have conversation trees, but they have AI charactgers who “bark”,
or speak spontaneously, to announce their state or forward the story. For stealth
games this is a critical game mechanic, because a big part of the game is the player
being aware of what the AI knows, what it’s planning on doing, and generally keeping
track of the AI’s state of mind. Having an AI that clearly communicates its intentions is
a critical part of the game.

9

A great example of this is Batman: Arkham City. (I love that game. So much good stuff
in it!)
This game has a bunch of different characters who convey state in stealth sequences.
One of them is so clear and straightforward that it’s like it was tailor made for
demonstrating!

(video) Example: the TYGER guards in Batman Arkham City, who actually say
things like "Target has been sighted!" "Converging on last known location!"
"Enemy object found! Initiating search!" "Scanning in dark areas!" and so on.

10

A great example of this is Batman: Arkham City. (I love that game. So much good stuff
in it!)
This game has a bunch of different characters who convey state in stealth sequences.
One of them is so clear and straightforward that it’s like it was tailor made for
demonstrating!

(video) Example: the TYGER guards in Batman Arkham City, who actually say
things like "Target has been sighted!" "Converging on last known location!"
"Enemy object found! Initiating search!" "Scanning in dark areas!" and so on.

11

Some games use contextual speech as an artistic device. Bastion has an omniscient narrator
who seems to respond to everything the player does. That’s not because the player needs
the game to tell him what he’s doing, of course, but because that’s what the game is *about*
-- storytelling, and creating a world from your actions.

12

Sports games have elaborate commentators that somehow assemble tens of
thousands of possible utterances from thousands of individual snippets about this
hugely dynamic environment that can get into I don’t know how many possible
situations. Handling all of this by just a forest of if-else would be painful.

13

And think about modern RPGs and all the state they track! Mass Effect and Skyrim
have to remember a huge library of things that the player’s done all over the world. It
affects conversation possibilities and the character stories avaialble; but it’s also
useful to create the feeling of a living world from just the passerby barks. If ordinary
townspeople remember that you are the elven mage that saved their village from the
demon horde, and interact with you differently based on that, you feel much more
like a part of the world than you would if they just said the same canned line over and
over.

14

Like I said, I don’t know how they implemented their stuff, but here’s the way we do
it. I think it would work pretty well to make games like those, and maybe it’ll work
well for you.

15

Our system was designed to be simple – SIMPLE – and uniform. We wanted one
straightforward way to track all the state of a game that could possibly be used to
select dialog, and a convenient way for writers to specify which pieces of state select
which bits of voice. We want writers driving as much of the dialog-creation process as
possible, because… that’s what they’re there for.

16

So, a quick bit of history about the system’s early origins. Team Fortress 2 is a
multiplayer game where players choose from one of nine character classes. Each of
the characters has its own voice. So, we have a mechanism for allowing players to
communicate in the voice of their character.

17

If, for example, I’m playing a soldier character and I’m injured and I need medical
attention, I can hit a button on my keyboard to say that in the voice of my character.

(“MEDIC!!!”)

Allowing players to communicate simple orders to each other in their characters’
voice encourages roleplaying and immersion, but it also helps international play. If I’m
playing in the United States, I’ll hear my soldier speak English, but if you’re playing
with me from Spain, then you’ll hear his localized voice in Spanish. So this is a way for
players to communicate with each other across language boundaries.

18

“Need a dispenser here!”

19

Other times you want characters to automatically announce important state without
the intervention of the player. For example, if I’m playing near a medic, and the medic
is ready to deploy his uber-heal-ray, I need to know about that whether the player
controlling the medic remembers to tell me or not. Having characters announce such
state on their own is an important prompt to players about actions they may need to
take.

20

“We must stop tiny cart!”

21

“Sentry going up!”

22

We also had a mechanism for contextual player-initiated dialog – basically you can
put your cursor over an object in the world, hit the “vocalize” button, and have the
game try to figure out what you probably mean and have the character say it in their
voice. This is sometimes more convenient than speaking at length, and it allows a bit
of role-playing.

23

It’s also an opportunity for us to play up allegiances and rivalries between characters
in the game world – scout vs heavy, sniper vs spy, for example; the character voices
gibe at each other and create a bit of storytelling automatically while the players just
play their game.

“the enginer is a spy!”

24

“the scout is a spy!”

25

“The spy is... a double agent!”

26

After The Orange Box, Valve did something kind of… Valve.
We’d just finished this big (cluster of) games, and we weren’t quite ready to go into
production on the next one. So we decided to take a little time to come up with new
ideas. We divided the old team into lots of little groups, like 3 or 5 people apiece,
with each group trying to come up with some new design idea, some feature, some
experiment that we could roll into a future game. It was a chance to try out risky
ideas.
One team chose to explore companion characters – what could we do to make
friendly characters who seemed more aware of their environment and the player?
Who had memories and felt like they grew along with the player’s experience? We
took a bunch of Half Life art assets, built a couple of character models, had an artist
and a programmer supply voices, and came up with …. TWO BOTS ONE WRENCH.

I was going to say “here, an internal project shown for the FIRST TIME EVER at GDC,”
but I’ve just been told that Geoff Keighley has shown these assets once before. So
here, for the… second time ever… the making of an internal design experiment.

27

First we asked, “what’s the easiest, simplest way we can prototype making characters
aware of their environment?”
Well, we had that code from Team Fortress that we used to find contextual dialog
based on what the player’s cursor was over.
So we exploited the same tech. We marked each object in the world with a unique
string class name.

28

Then each robot simply polls its field of vision every few seconds. If it finds an object
there, it tries to find a line in its database corresponding to the object’s tag. If there’s
a match, it plays.

Super simple.

Objects are tagged by name (eg “soda_can”, “radiator”)
Database stores possible lines indexed by object name
Characters poll their field of vision for objects in world. If a line matches, say it.
Easy as π!

29

Video available via
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/

30

http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/

This is all the code it took to pull it off. Script, really – we call them response rules. To
create a new line about an object, a writer just needed to add a new stanza to this in
Notepad, with an additional criterion for the object’s tag name. If there wasn’t a line
for an object, nothing plays. Since we poll every object, adding a new bit of dialog just
means adding a new rule. Four lines of text – one of them is the name of the vox file
to play.

31

Walking around reading signs is all well and good, but we wanted characters to talk to
each other. And there’s lots of ways that you can handle conversation in games –
create scripted sequences, entities that lock down the two characters, some kind of
purposebuilt statekeeping for conversation. But that’s a lot of work, and I’m always in
a hurry. So once again, we asked, what’s the simplest possible way we can do this?
And we figured that the same way we had the robot poll its vision every few seconds,
and send itself a “onSee” event with the name of the object if something were there;
we could have each line of dialog by the red robot dispatch an “onReply” event to the
blue robot when it was finished. The same way we paramterized onSee with the
object name we paramterize onReply with a unique tag for the bit said by the first
robot. If the second robot has a reply, it plays; possibly it triggers a reply on the first
robot, and back and forth. Again, brain-dead simple.

//
Every line said by a bot also gets a name tag, eg “redbot_danger_flammable”
When red bot finishes speaking, automatically triggers a lookup on the blue bot
If blue bot has a rule in its database matching the redbot’s followup tag, then it plays.

32

Video available via
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/

33

http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/

Well, if you’ve got conversation, then you *need* running gags. We wanted
companion characters that had memory; that reacted differntly based on what the
player had done near and to them before. Again, what was the simplest, easiest way
we could do this?

We figured we could add just one more little bit of technology. The same way all the
previous rules were parameterized by *eg* the object seen, along with other criteria;
we figured we could create a table of “memory” in the character’s head and then
send that along with every voice query it made.

34

So here you can imagine that we have a bunch of rules where the matching criteria
are not just “what am I looking at?” but also an arbitrary “seen_barrels” variable. The
first time a robot sees a barrel, the first rule matches. It plays the first line, but it also
sets a bit of state back in the robot’s head.

Photo of barrel via Wikimedia Commons.

35

So the next time the robot sees a barrel, it matches the second rule in the database –
the one with a different seen_barrels criterion. The criterion name is arbitrary; it’s
just what the writer chose to name the variable in the robot’s head.

36

“Then” rules can also write context back to the character or the world
This context is appended to the next query performed by the character.
Creates memory, the ability to pick subsequent lines based on what happened
before.

37

Video available via
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/

38

http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/

Left4Dead is a game about four people – you and your friends – fighting against a
zombie horde. It is designed for replay, so you’ll go through each campaign many
many times. That means we need wide variety; otherwise if you hear the exact same
canned lines at the exact same points over and over, it becomes dull very quickly.

39

We have a complex AI “director” to create that variety, by dynamically responding to
player actions, throwing different enemies at them each time, and generally trying to
keep it fresh.

You can see why a basic system of brush triggers playing canned lines won’t work
here. For one thing, events don’t always happen in the same place in the same order;
you can’t have Nick, the Gambler, play a line about the hunter-zombie every time he
walks into the warehouse, because it may not be there on a given playthrough. Also,
with each level played so many times, that degree of repetition would be really
painful; you need much more variety in the placement and nature of the canned
speech.

40

And not every survivor makes it to the end! At any point in the map, you may have
only some subset of the survivors with you; the others may be dead or straggling. So
the system needs to cope with having different sets of characters available at each
point in the map.

41

Here’s an example of what I mean by variety. This is the exact same location of the
exact same mission, but on two successive playthroughs.

Video available via
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/

42

http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/

We also needed a way for the AI characters to shout out important facts in the world.
If I’m playing with my friends, and one of them sees an ammo cache in a dark corner,
then my friend can just tell me. That’s an important thing to know; the ammo is in
different places every time. But you don’t always have four humans in a game; we
have bots that fill in for missing players, and a single player mode. I still need the AIs
to convey that kind of information as if they were humans. So we needed context-
triggered speech that the bots could play to call out things like weapon caches, as if
they were humans, and without level designer markup. Once we did it for the bots,
we realized it was pretty cool for the human-controlled characters to do it also; it’s a
bit of additoinal roleplaying, and more convenient than having to call out yourself.

Video available via
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/

43

http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/

Left4Dead is a game that tells its story through the environment. We don’t have much
in the way of cutscenes; the story of the zombie apocalypse is told through the things
that you see around you as you move through the world. So, the best way we had for
characters to tell their stories, to express who they are and show their development,
was through having them remark on the environment also. That’s a chance for
running gags too.

Video available via
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/

44

http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/

The Left4Dead series had more dialog than any of our games to date – over ten
thousand lines. That’s moderate by RPG standards but it’s more than we’d ever had in
an FPS. So we also wanted a system that could manage script and speech at high
scale.

45

The important thing about dialog is not the code. It is the writers. Writers make
dialog. That’s what you pay them for!
In a lot of games, the AI programmer looks at all the events that happen to a
character, and tries to guess, “well, for which events would this character want to say
something?” The programmer puts in code hooks for each of the sites he can think of
and then hands the writer a big spreadsheet and says, “okay, fill out a line for each of
these events.”

Well, the problem with this is you’re basically reducing your writers to filling out a
series of mad-libs. That kind of cramps their style. It also means that it’s really the
programmers doing the writing, and the intersection between the set of good
programmers and the set of good writers is pretty small (unless you’ve got Vernor
Vinge or Ted Chiang working for you).

Also, any time the writer finds a new circumstance in which she’d want to have a line,
she has to go back to the programmer and ask for a new code hook to be put in.
That’s slow and it means less stuff gets written. So we really wanted a way for writers
to decide which circumstances got lines and how finely those lines were specialized.

… and I get to make the last arrow-to-the-knee joke of this conference.

46

Now let’s go behind the curtain to see how it works. The basic idea is really simple.
Like, head-slappingly “it’s so obvious in retrospect” simple. That’s what makes it user
friendly.

Remember also that it grew by accretion. It wasn’t designed; it kind of evolved as the
writers made suggestions over the course of several games. If we’d set out to design
something like this, we probably couldn’t have come up with something so simple.

47

Here is the basic idea behind the system.

You have a database of rules, each with a list of criteria about the state of the world
that must be met for the rule to be considered a match. A rule has an associated
“response” which is simply the thing that happens when a rule matches, such as a
voice file or an animation. When it is time to say a line, a query is constructed of
many key-value pairs. The database searches for the rule with criteria best matching
the data in the query; if one is found, the response is sent to the character, who
utters it as dialog.

48

A “context” or “fact” is a piece of world state. Like “current map is swamp.”
A query is a pile of those glued together. All the state of the world, used to lookup an
action.
A criterion is a single function that returns true or false for a piece of world state. Like
“zombies greater than 3.”
A rule is a list of a criteria, all which must be true for the rule to “match.”

49

Programmers are used to thinking of the world as a bunch of facts strewn hither and
yon. If I want to have an action that occurs when the player is in the cave and the
wolves have been killed and his ally is nearby and so on, then I can code it by building
a huge conditional intersection of a bunch of member variables and function calls.

There’s a few things painful about this.

First, it’s not discoverable what kind of data you have available to make a decision.
You sort of have to know a priori what information is present for you to test (typically
by having put it there yourself) and where to go looking for it. If you don’t know that
there’s a saved state object that tracks the lives of every person in every town, you
may not even think to make special cases that depend on that.

Also, it’s nonobvious how you get information from all of these sources. There may
be a complex chain of members and functions between wherever you’re writing your
code and the information you need for your logic.

Finally, it’s just plain messy. Look at that. Confusing.

50

It’s much easier and more natural to think of the world as a flat pile of facts. If you
always pull every piece of information together into a flat dictionary – use sub-
namespaces if you like – it’s always clear what you have available to select login
upon; just look at the query. Also, it’s easy to find an individual bit of state in this tree;
it’s just a key lookup. If you always pull all the state of the world into a flat
representation every time you look for a rule, then it’s very simple to add new and
more specific rules: you don’t need to remember which pieces of world state are
available in queries under which system. You’ve always got the whole world at your
fingertips.

Plus, it’s just plain easier for non-programmers to think of state like this.

51

An individual “context” or “fact” is just a pair – a keyname string, and a variant value
(any type). Like “hitpoints are 57”.

52

Don’t actually use strings, of course. Use symbols or interned strings instead. I’m just
using “strings” as a shorthand for “human readable unique identifier.”

53

Thus a query "context" is essentially an associative array of keys to variant data.

Certain keys may have special meanings to the implementation – for example, we use
“concept” to specify the general type of line being queried, like “saw enemy” or “on
hit by bullets” or “player pushed context-sensitive button”, and “who” to indicate the
character performing the speech query ie which voice are we looking up. In our
system every query must have at least those criteria, but mathematically they’re like
any other criterion.

54

The contexts in a query are built up from many sources.

First is the function that actually starts the query. It creates the query object and
populates it with the basic information of the event you want the character to talk
about, such as the general type of line you’re searching for and event-specific info.

55

Then you call through to the base Speak() implementation, which starts to add in
facts about the character who’s speaking. This is when you procedurally pull in every
fact that might be relevant to looking up speech, such as the character’s health,
weapon, nearby friends, any other local data or functions. The base Speak() member
adds each of these to the table. You can chain through to ancestors’ implementations
as well, of course.

56

Then there’s the persistent store inside the character, arbitrary data that can be
written either by code or by writer-generated rules. This is where we store things like
how many times a particular line has been said, events that happened previously, and
so on. It’s a table of arbitrary keynames and whatever the dialog rules have set. Add
these to the associative array also.

57

Then you merge in any procedural state about the world in general; current map,
extant entity count, and so on. The world can have a persistent memory store as well,
just like individual characters.

58

Take all of these sources of data, concatenate them all into one big associative array,
and that’s your query. It contains all the facts you’ll use to select a line.

59

It’s also natural to think of dialog as a system of general rules superceded by
exceptions for particular circumstances. If a thug sees Batman, he says “hey look,
Batman”, unless he’s a Penguin thug, unless he’s a Penguin thug and the Penguin is
arrested, unless he’s alone, unless etc etc etc. This is a really comfortable way to think
about behavior – as a hierachy of increasingly specific exceptions sitting on top of a
general baseline.

61

If a “fact” is a single piece of state about the world, then a “criterion” is a single
function that tests a fact for truth. Like “The speaker is Bill” or “hitpoints are between
30 and 60.” I’m using “function” here in the computer science sense of some
arbitrary conditional the returns true or false on a particular fact. You could use an
actual function pointer if you really wanted to, but it’s hardly ever necessary; typically
we represent all of our criteria as numerical comparisons to make them more
efficient. (That’s later in the talk.)

62

A rule is a a tuple of criteria that all have to be true. If one is false, or one mentions a
fact not in the query, then the rule is considered to reject.
Many rules may match a query. If you have a very specific “oh look a zombie is on the
merry-go-round next to the ice cream machine” rule, then the “oh look a zombie”
general rule will probably match also. So you need a scoring function to pick specific
rules over general ones. You can write that lots of different ways; have different
weights for criteria and so on. The scoring function that worked best for us was the
simplest one imaginable – the number of criteria in a rule. The more criteria a rule
has, the more specific it is.

63

Here’s a simple example of how you might match a query against some rules. You can
see the facts in the query. The first rule matches, because both of its criteria are true.
The second one fails because the “concept’ criterion is wrong. The third one fails
because the “health” criterion is wrong. The rest of the rules all have additional, more
specific criteria, which match as well.

64

So now we score the rules that passed. The simplest way is just to count the number
of matching criteria.
Rule 1 has two criteria, it’s the general case, scores 2.
Rule 4 has more, it’s more specific, so scores 3. It’ll always play in preference to the
other when available.
Rule 5 and 6 also match other specific criteria, scoring 3. They’re all appropriate so
you can choose randomly between them for variety.
But rule 7 has more criteria than the rest. It scores higher, so is the most specific line,
the one that plays.

65

The “response” is just whatever happens when a rule matches. You can have some
intelligence here too. For example, we actually record a bunch of different variation
for each line, put them in the same “response”, and have the engine choose
randomly between them when a rule matches; it’s an easier way to have variety than
creating a bunch of parallel rules. Or your “response” could be code, or executable
script, or anything really.

66

So far what we have is an elaborate system of conditional choice – basically a
rearranged if/else and switch mechanism. To make the system capable of memory
and conversation, we need more. Let’s take a look at how a particular rule works, in
detail. In this case, one of the conversations that play at the beginning of a mission.

67

Each character in game polls itself every few seconds to see if it has any “I’m idle”
dialog it wants to play. That’s the “TalkIdle” concept. This rule will match that concept
if some other criteria are met:
• Three survivors are present
• The speaker is “Nick”, the “gambler”
• This line hasn’t been said already
• We are in the swamp map
• We’re in the start area.

68

When this rule matches, it’ll write a couple of facts back to nick’s memory: in this
case, that the line has been played, and that Nick is speaking for the next few
seconds. The latter is an example to show that you can have automatic expiration
times on a particular fact, if you want to prevent two successive bits of a running gag
from being played too close together.

69

Now look at those “then” clauses. What they mean is: once the line has finished,
automatically trigger *another* concept (specified there) to the specified character.
“Then rochelle C3M2SafeRoom2d” means that a “C3M2SafeRoom2d” concept is sent
to Rochelle (the TV producer) after Nick finishes saying his line. She in turn will do a
lookup in her rule database and find if there is a reply she wants to say.

70

Rochelle does have a reply. She says it; that in turn has another “then” followup that
dispatches back to Nick, who has a reply of his own, and so on.

71

Or maybe the other lines gets chosen randomly. Maybe instead of dispatching the
line to Rochelle he dispatches it to himself. Then he has another couple of lines; “I
can feel my feet growing fungus”, or “This swamp is just a cesspool for disease.” The
latter one has *another* followup to Ellis. Each time the game plays out, it’ll
randomly select a different change, a different experience, without needing any
special programmer code at all. The writers can build it all themselves, quite easily.

This approach also means you query the followup line when the callback happens,
not when the first character starts to speak. The situation may have changed during
the time it took the first line to be said.

72

This is a really cheap way to get this branching conversation effect that we use to
create variety. Just by adding a couple of rules and recording some voice, you can add
new outcomes, or merge paths back together. You can create a lot of possible paths
really cheaply.

73

In addition to dispatching a followup to a specific character, you can send one to all
nearby characters within earshot simultaneously, to see if any of them have a reply;
and of those which have the best reply.

74

So the rule goes out to everyone. And maybe Rochelle doesn’t have any line at all for
this situation, so she has a match score of zero. Maybe Ellis has kind of a generic line,
so he matches with score 2.

75

But Coach, he likes to Coach people. He has specific lines for this situation. So, if he
happens to be around, he’ll match with the best score.

76

Not only does Coach tend to have the best match because he has specific “help my
buddy out” lines, but he also has specific lines for each of the characters. They have
an additional “if random number is less than 30” criteria so they don’t get
overplayed. Also, if somehow we added another survivor character for which he
didn’t have a specific line, it would automatically fall back to the general ones, and
Coach would still have something to say.

So all of this creates character for Coach, and an interaction between the survivors!
Coach coaches – that’s who he is. And if you’re hurting and he happens to be around
and he’s healthy, he’ll try to coach you along. If he isn’t around, maybe someone else
has something to say. If not, then Nick just complains to himself. It’s all automatic and
writers can add additional special cases without needing to change any code.

77

Query the followup line when the callback happens, not when the first character
starts to speak. The situation may have changed during the time it took the first line
to be said. For example, consider an interaction when coach talks about his favorite
rock band, and Ellis agrees. Coach only sends a message to Ellis to look up his line
after Coach’s line is finished.

78

That’s to handle cases where, say, a zombie appears and starts chewing on Ellis while
Coach is talking. In this case you do not want Ellis to continue blabbing about the
Midnight Riders. You want him to interrupt the conversation and talk about
something else.
Because Coach sends a message to Ellis at the end of Coach’s line, Ellis does a lookup
for a reply based on the context at exactly the moment he begins speaking. In that
case, the IsNotInDanger criterion is no longer true; a zombie is nearby. So the
conversation self-terminates because the criteria for its existence are no longer true.
You don’t need any kind of explicit interruption mechanism.

79

That gets you out of having to build explicit “conversation” entities and glue down
both characters while they’re speaking and have a means of handling interruptions,
etc.
It’s also worthwhile to cut up long monologues by a single character into short pieces,
where each line sends a “followup” back to the speaker to trigger the next. That’s a
simple way to bail out of long speeches if something happens, or allow writers to
create additional conversation branches where another character actually breaks in
on the speech if they happen to be present.

80

This blurs the line between code and content, with a number of salutary effects.

81

Humorous video.
Video available via
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/

82

http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/

Now let’s talk a bit about how to make a system that is comfortable and powerful for
writers to work in.

Photo credit: bios [bible] robot by Matthias Gommel, Martina Haitz, Jan Zappe

83

In fact, what better place to see how writers make code than interactive fiction? The
Inform 7 language/system, used for making text adventures and interactive fiction,
has had this notion of rulebooks cascading from simple to general cases for years.

84

This is actual Inform source code. It looks like English, but it’s actually a regular
computer-parsable grammar. Inform has this very notion of rulebooks, where specific
cases override general ones based on circumstances around them. As you can see
this idea is very straightforward to represent in a natural way, and its inclusion in
Inform suggests how applicable it is to the task of creating dialog and narrative.

85

Smart writers know what works for them. And your writers are smart. If they were
not smart, they would not be writers.

Programmers shouldn’t force a workflow on writers. It’s important that writers be
able to iterate as freely and quickly as possible, and they have to be comfortable for
that to happen. Programmers often have preconceptions about how writers think,
when many writers are perfectly able to define how they’d like their tools to work.
Design tools for your writers on your project, rather than some abstract idea of
writers. Ask your writers what they want.

This is a very early typewriter manufactured by the Sholes-Glidden company (later
Remington), incidentally also the one that introduced the QWERTY keyboard. Mark
Twain was one of the first writers to use one, because he loved gadgets. He didn’t like
this gadget, though; it didn’t work well for him, and was unreliable. But he was
perfectly capable of defining his own comfortable work environment better than
Remington could.

Photos from Wikipedia.

86

One workflow is to simply write the script file that the engine loads directly. Ours has
a straightforward recursive-descent grammar that is easy to parse and generate
mechanically. A programmer can simply write the script in this format. I guess. It’s not
very convenient.

87

Or, you can come up with a simpler specification language for writers to work in, and
then cook that into script files. For example, consider the handwavey Batman
example I showed earlier. Although these rules are specified informally, you can see
how each of them could be mechanically transformed into a formal spec.

88

Or, you can come up with a simpler specification language for writers to work in, and
then cook that into script files. For example, consider the handwavey Batman
example I showed earlier. Although these rules are specified informally, you can see
how each of them could be mechanically transformed into a formal spec.

89

Or, you can come up with a simpler specification language for writers to work in, and
then cook that into script files. For example, consider the handwavey Batman
example I showed earlier. Although these rules are specified informally, you can see
how each of them could be mechanically transformed into a formal spec.

90

Or, you can come up with a simpler specification language for writers to work in, and
then cook that into script files. For example, consider the handwavey Batman
example I showed earlier. Although these rules are specified informally, you can see
how each of them could be mechanically transformed into a formal spec.

91

With Inform 7, you can specify these rules formally, even if they look like English. So,
since this is a parsable computer grammar…

92

… it too can be translated directly into the internal representation.

93

Dota’s writer uses an Excel spreadsheet; and that’s fine! Some writers like
spreadsheets. There’s a row for each bit of dialog, columns for the criteria, and we
use a macro to export from this to the engine’s format. An advantage of this system is
that it keeps all of your information about voice in a common place; we can use the
same .xls to track engine rules and data about the voice as it moves through casting,
recording, and audio processing. We can export from this spreadsheet to both the
engine’s script and also the physical paper script that the actor takes into the
recording booth.

94

Or you can build a visual tool. I spent several weeks over one summer writing a
gadget for writers to visualize their work and conversation flow – I haven’t got a
screenshot of it any more, but this is sort of what it looked like. But I fell into the trap
of thinking about abstract “writers” rather than my writers. I sat down to write a tool
and thought, “hm, what would writers like? Writers are creative people. Creative
people like visual things. So what I need is a visual tool with drag and drop and little
bubbles and…”

But I was wrong! I showed it to my writers and it never got used. It was too restrictive
and too simplified for them. What the writers on Left4Dead and Portal really wanted
was…

95

…a FoxPro database.

Chet Faliszek and Erik Wolpaw were database administrators in a previous life.
They’re very comfortable with building databases, and were perfectly capable of
building a FoxPro utility to manage all their work for them. And this worked great for
them: they were able to corral enormous amounts of data, do batch-processing,
write export scripts, store everything in one place. If I’d only asked them what they
wanted, I could have spent my time writing them better FoxPro export tools or a
frontend to some more usable database with the same features.

96

You can also expose the rules database and its types as a feature in your script
engine. Table-based script types map neatly to the notion of “facts”, criteria lists,
queries built as associative arrays; and your responses can be arbitrary script objects.
By exposing bindings to your native-coded response engine, you can make it a script
feature that’s both convenient and performant.

97

You can also expose the rules database and its types as a feature in your script
engine. Table-based script types map neatly to the notion of “facts”, criteria lists,
queries built as associative arrays; and your responses can be arbitrary script objects.
By exposing bindings to your native-coded response engine, you can make it a script
feature that’s both convenient and performant.

98

Another important factor in usability is a rich set of debugging tools that can be used
in-engine while the game is running. Make sure to write them!

99

Another humorous video.

Video available via
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/

100

http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/
http://assemblyrequired.crashworks.org/gdc2012-dynamic-dialog/

Now to some of the implementation details.
This is not a relational database. You cannot represent this as an SQL query. If it were
a relational database, you would need a row for each rule and a column for every
possible criterion to appear, meaning that most rules would have thousands of NULL
columns for all the criteria they do not care about. This is neither efficient nor
convenient.

In computer science terms what we have is a surjective lookup function. Each “rule”
in the database is a key-value pair, where the value is the response and the key is an
expected state of the world. In this case, the keys are not numbers or values, but
complex predicate functions – in particular, a tuple of predicates, all of which must be
true for the key to match. The predicate functions act upon the “query” object, which
is a tuple of values. Another way to look at is that the predicates are global and look
at the state of the world.

101

You can imagine the most straightforward way of doing this pretty easily. You start by
adding together all of the sources of facts…

102

…into one giant associative array, by doing a merge operation (like adding dictionaries
in Python)…

103

…and then doing the obvious thing.
In cubic time.
I pronounce cubic-time algorithms as “you’re fired.”
We can do better.

104

First, simply sort the criteria and facts in each rule alphabetically. Then you can walk
through them linearly, rather than having to search the query. Also, this makes it easy
to early-reject when a rule has a criterion with no matching fact in the query.

105

Also, you don’t need to actually merge the arrays. If you keep parallel pointers into
each source of facts, then you can walk them individually and get mathematically the
same result as actually merging the arrays, without having to actually perform the
memcopy.

106

Next you can partition your rules. For example, if you know that every rule always has
a “who” criterion identifying who is speaking,

107

Then there is no need to search every rule in the database for lines pertaining only to
Nick.

108

You can bucket your rules by speaker, get a constant-time lookup into the partition
containing just Nick’s rules, and then search just his lines.
You can also subdivide that partition further by concept, map, etc – anything else that
you know to be a constant-value predicate present in each rule.

You can also take those predicates – like “who=nick ; concept=onreload ; map=swam”
– concatenate, and hash them. That gives you a hash key you can use to bucket rules
as finely as you like, rather than explicitly chopping them into partitions. That way
you can specify arbitrarily many partitions based on how many keys you are hashing,
so you can partition your rules as finely as you like. If you can get down to about fifty
rules per bucket, and each rule has an average of eight criteria, you can do a lookup
in less than a microsecond.

109

You can also explicitly partition rules and facts by region. Let’s say you have a
globetrotting European adventure. England and Spain have quests relevant only to
those regions. When you’re in England, you don’t want to test all the rules that are
relevant only to Spain quests; there is no chance that a line there will match.

110

So cut your rules up into individual databases by region. You’ll always have the
“global” rules which can play anywhere loaded (like “ouch” and “draw your sword!”
and so on).

But rules in other regions can be put in their own databases. If you’re in the King
Arthur level, you don’t even need to keep, say, the Italy rules in memory. Leave them
on disk. Stream dialog rules in with the level data. Then when you search for lines in
England, you can check the England and Global databases in parallel.

Photo of King Arthur from Monty Python and the Holy Grail
Illustrations of England and Italy from Wikimedia Commons.

111

Do the same thing with fact sources. Facts relevant only to England quests can be
stored along with other England-specific data. You can merge in the England tables
while running one of its quests, and dump the entire table of England facts from
memory when in some other region.

112

Next optimization: within each partition, search rules by decreasing score. If you
match a six-criterion rule, there is no need to even test the five- and four-criteria
rules; there’s no way they’ll be returned.

113

If you know a six-criterion rule has passed, there’s no need to test the four-rule
criteria. So sort by decreasing “score” and you don’t need to test rules just to throw
them out.

114

Next up you can accelerate the comparison of an individual criterion – eg “does name
equal bob” and all those other building blocks.

115

Almost every criterion I have encountered can be represented as an interval on a
number line.

Remember that IEEE754 supports comparing floating point numbers to infinity!

116

Even string equality is an interval on a number line, if you use a symbol table or some
other way of mapping strings to unique integers (as opposed to using const char *
like a noob).

You’ll notice that even though I am asking == here, I actually use greater-than-or-
equal AND less-than-or-equal to intersect to just “equal.” This is so that every
comparison can be performed using the exact same instruction stream.

117

It’s possible to store a “comparison type” enum in each criterion and then switch or
if-else between “equals”, “greater”, “greater-or-equal”, “neq” etc comparisons
between a parameter and a number. But this is a lot of additional branches.

118

All of those comparisons can be transformed into an a ≤ x ≤ b operation, or
intersections thereof. Then you can represent every comparison as the same
structure and use the exact same comparison code for each one. This reduces branch
penalties drastically.

119

You can also do this with floating point numbers. In any discrete number system, you
can transform a strict greater-than comparison to a greater-or-equal comparison by
adding an epsilon. Epsilon does not mean “an arbitrarily small floating point number”,
but has a specific definition in the context of comparing IEEE754 floats. Bruce
Dawson’s blog has lots of great information about comparing floatpoint numbers
efficiently and the underlying details of their operation.

120

Then you can do all sorts of other clever optimizations – representing the intervals as
subspaces of an n-dimensional space, partitioning rules by principal component
analysis, using r-trees and x-trees and…
Don’t.

121

It’s not worth it. It’s a lot of extra complexity and in my experience not even faster;
you end up blowing your cache more than you save time. If you just use the
hierarchical partitioning mechanism, you can get your buckets down to a dozen or so
rules apiece, and then finding the best rule in a bucket is less than a microsecond.
The hierarchical technique is fast enough, and much simpler to code.

You can always go back to the crazy-land algorithms if you end up with enormous
data sets; the interface to the system will remain the same, so you can optimize the
back end ad lib.

122

By the way, this makes modding and user-generated-content easier, because it’s all
additive. People can always add rules to the system without breaking old ones; and if
you throw all the worldstate into each query, modders can add in new special cases
for state that exists in the base product, but had no specific outcomes. So if a modder
adds a new character class to the game, they can add in lines for the class, and even
have old characters respond to it specifically, without needing to change the base
product.

123

So, a summary. If you want this kind of rule-driven matching behavior, what you need
is a pattern matching engine of some kind.

124

You want to build queries into your rule system by adding together as many facts
about the world as possible; and you always want to throw all that state at the
database each time, to enable writers to add new rules for new specific
circumstances without requiring programmers to go and add additional data to the
query.

125

You need a way for one response to trigger a lookup on a different character when it
has finished, to make conversations.

126

You need a way for a matched response to write state back to the world, to create
memory and turing-completeness.

127

And it has to be convenient for YOUR writers to work with! The whole point of this is
to make a system that’s comfortable, friendly, and intuitive for writers to work
autonomously without having to wait on programmers. The more easily and quickly
writers can iterate, the better they will write!

128

129

130

131

A philosophical interlude: when I say "Zoey remembers she got shot", is this
meaningful or do I just mean "this creates the illusion that Zoey remembers she got
shot." She doesn't "remember" anything, she is just choosing a different canned
recorded line to play based on the state of a few variables.

132

Well, what if I said “In that movie, Hamlet is upset about his dead father”?

I would actually mean “I saw a guy called Sir Laurence Olivier pretend to be Hamlet
who is upset about his dead father.” Actually what I really saw was a screen reflecting
light projected through celluloid that on it had an image of Lawrence Olivier
pretending to be Hamlet. But Hamlet is an imaginary person; what I really saw was a
screen reflecting a picture of Laurence Olivier reading some words from a book
written centuries earlier.

The point is that whether a character remembers or feels something is intrinsically a
projection by the player, which is sustained by convincing writing and performance. If
the object on screen acts and makes sounds like a convincing human would, we
imbue it with human feelings. The quality of writing and simulation is what creates
the suspension of disbelief.
Therefore it's important to make a system that enables writers to work comfortably
and spontaneously.

If the rule set is programmer defined, then you force writers to fill out a series
of mad-libs, which is not going to generate quality content.
Also, if the writers can't easily define new rules, then they won't
spontaneously come up with ideas for special cases or new gags.

133

By representing each context as an axis in an n-dimensional space, each possible
rule's criterion vector as a c-dimensional subspace, and the query as a q-dimensional
point, the problem of selecting responses becomes a spatial interval search for the
most specific subspace containing (q), allowing lookups to occur in logarithmic time.

Ie, consider the R-tree, which is a fast spatially sorted data structure used
for eg Google Maps queries like "find all restaurants within 2km of here"
You can use an R* or an X-tree to extend this concept from two to N
dimensions.
The rules database can be built offline, so insertion performance and
unbalanced trees aren't a problem: you do the additional work to precompute
perfectly balanced trees before the game ever runs.

Maybe I invented this just so I could say "Q continuum" at work

134

Players could actively trigger dialog by selecting it from this wheel. This would
correspond to the “concept” of the speech query, and then the other contexts pick
the specific line.

135

136

Incidentally this is enough to build any general-purpose program. It’s turing complete.
With conditional branches and stored state, you can do actual logic and computation
in the system.
That makes it possible for writers to implement flow charts in the dialog engine...
which is the essence of a conversation tree

Or running gags, or followup comments, etc.

Picture of Alan Turing via Wikipedia

137

Thinking in rules is writer friendly but the fact that system is turing-complete means
that you can express any logic with it. Ie, the system is a fully expressive domain-
specific language.

(too cumbersome for general-purpose code, but can be stretched to accommodate
any special case)

Picture of Alan Turing via Wikipedia

138

Example bindings to Squirrel, a scripting language we’re experimenting with

139

Back in history : the Half Life 2 "response rules system"
A very simple database of general speech concepts like "reloading", "help
me", specialized by a small set of criteria: gender of speaker, current map,
some optional factors like the presence of enemies or health of player.

140

Back in history : the Half Life 2 "response rules system"
A very simple database of general speech concepts like "reloading", "help
me", specialized by a small set of criteria: gender of speaker, current map,
some optional factors like the presence of enemies or health of player.

So you had just a single “TLK_HEALING” event, and then the system would try to pick
the best, most specific line automatically based on all the other factors

141

Back in history : the Half Life 2 "response rules system"
A very simple database of general speech concepts like "reloading", "help
me", specialized by a small set of criteria: gender of speaker, current map,
some optional factors like the presence of enemies or health of player.

So you had just a single “TLK_HEALING” event, and then the system would try to pick
the best, most specific line automatically based on all the other factors

142

Storing individual variables to remember which lines were said, and having to add
criteria on the rules to prevent them matching twice, is lame. It would have been
better to have some way for a response to remove itself from the database after
playing.

143

144

